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Abstract—Efficient storing and retrieval of medical images has 

direct impact on reducing costs and improving access in cloud 

based health care services. JPEG 2000 is currently the commonly 

used compression format for medical images shared using the 

DICOM standard. However, new formats such as HEVC can 

provide better compression efficiency compared to JPEG 2000. 

Furthermore, JPEG 2000 is not suitable for efficiently storing 

image series and 3D imagery. Using HEVC, a single format can 

support all forms of medical images.  This paper presents the use 

of HEVC for diagnostically acceptable medical image 

compression, focusing on compression efficiency compared to 

JPEG 2000. Diagnostically acceptable lossy compression and 

complexity of high bit-depth medical image compression are 

studied. Based on an established medically acceptable 

compression range for JPEG 2000, this paper establishes 

acceptable HEVC compression range for medical imaging 

applications. Experimental results show that using HEVC can 

increase the compression performance, compared to JPEG 2000, 

by over 54%. Along with this, new method for reducing 

computational complexity of HEVC encoding for medical images 

is proposed. Results show that HEVC intra encoding complexity 

can be reduced by over 55% with negligible increase in file size.  

 
Index Terms—Computational Complexity Reduction, DICOM, 

HEVC, Intra coding, Irreversible Compression, JPEG 2000, 

Medical Image Compression 

I. INTRODUCTION 

loud based health care service offer several benefits such 

as storage of, and access to, medical imaging data and 

electronic medical records in real time. Real time access to 

medical imaging will lower the distribution costs, reduce the 

duplication of medical imaging, and reduce the cost of 

medical image storage infrastructure. Medical images have to 

be stored at very high quality and efficient compression 

algorithms will have a direct impact on lowering costs.  For 
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example, four sets of PET-CT medical images of one patient 

may require 4+ GB of storage space. Efficient compression of 

medical images has a direct impact on reducing costs and 

improving access on ubiquitous and heterogeneous mobile 

devices.  

Digital Imaging and Communications in Medicine 

(DICOM), a medical imaging standard [1] is currently used 

for sharing medical images across applications. DICOM 

specifies JPEG and JPEG 2000 (J2K) for reversible (lossless) 

and irreversible (lossy) compression of medical images. 

Medical image series (a set of related images of a single body 

part) are compressed in DICOM as individual images without 

exploiting any temporal redundancy in the image series. The 

High Efficiency Video Coding (HEVC) standard offers 

significant performance improvements over standards such as 

H.264/AVC and JPEG/J2K [2], [3], [4] and can provide 

significant compression savings for medical image 

applications. While it is desirable to use lossless compression 

for medical images, lossy compression that does not affect the 

diagnostic accuracy may be acceptable. Koff et al. reported an 

acceptable range of irreversible compression ratios (ICR) of 

JPEG and J2K for 2D medical images of various DICOM 

modalities and anatomical body parts [5].  

A key contribution of this paper is the establishment of 

acceptable irreversible compression ratio range for both 

HEVC Intra and Inter encoding of medical images. In this 

study, the focus is on comparing the irreversible compression 

performance of HEVC-Intra and HEVC-Inter with J2K.  

Compression performance was evaluated for the 

diagnostically acceptable compression ratio ranges established 

by Koff et al. [5]. Results show that using HEVC for medical 

image compression reduces storage and bandwidth needs by 

up to 54% compared to DICOM images using J2K 

compression. Another contribution of this paper is a new 

method for reducing computational complexity of lossless 

HEVC encoding for medical images. Results show that HEVC 

intra encoding complexity can be reduced by over 55% with 

negligible increase in file size. 

This paper is an extension of the work presented at the 

IEEE International Conference on Consumer Electronics [6], 

[7]. The work is extended with in-depth experimentation, use 

of larger data sets, and use of images with more modalities 

and body parts, and development of a methodology to 

establish acceptable irreversible compression and reducing 

computational complexity of HEVC Intra coding for medical 

images. The paper is organized as follows: section-II provides 
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overview of few widely used video and image coding 

standards along with related research; section III and IV 

present HEVC irreversible compression evaluation method 

and its results, whereas section V and VI present the 

computational complexity reduction method and its results. 

Finally, observations and conclusion are presented in sections 

VII to VIII respectively. 

II. OVERVIEW OF VIDEO/IMAGE CODING STANDARDS 

Medical images are commonly represented in DICOM 

format and in many cases, are image series. In digital video 

coding, a picture (a medical image) from a video sequence (a 

medical image series) is represented by three components: 

Luma (Y component), that represents the brightness of the 

medical content at each pixel location whereas other two 

chroma components (commonly known as U and V 

components) represent the color difference at each pixel in the 

picture. Each picture (medical image) is represented by 3 

rectangular arrays consisting of Y, U and V components.  

 H.264, a widely used hybrid video coding standard has 

block based coding structure and it segments each medical 

image into several macro blocks of size 16x16 pixels. Each 

Marco-block consists of 16x16 Luma and two 16x16 chroma 

component arrays for a 4:4:4 YUV scheme. In this case each 

component array is of equal size. Other YUV schemes 

includes 4:2:2, wherein chroma samples are half the width but 

same height as Y component and 4:2:0 wherein both chroma 

components have half width and height as of Y. For medical 

images which are mostly grayscale images normally the YUV 

format of 4:0:0 is recommended. Macro blocks are further 

segmented into blocks of various sizes ranging from 16x16 to 

4x4 [8]. H.264 predicts each block as per the encoder settings 

and the residual is obtained by computing the difference 

between the actual source and predicted block.  

H.264 has two prediction modes such as (i) intra picture 

prediction and (ii) inter picture prediction. In order to remove 

spatial redundancies, intra picture prediction uses selectable 

position dependent linear combinations of neighboring sample 

values to form a prediction block. H.264 intra uses various 

block sizes such as 16x16, 8x8, and 4x4 for luma block 

prediction and 16x16, 16x8 or 8x8 chroma block prediction. 

H.264 has 9 intra prediction modes for 4x4 luma blocks and 4 

modes for 16x16 luma and 8x8 chroma blocks. Prediction 

process generates residual values by subtracting original block 

from predicted block. Thereafter an integer transform is 

applied to residual and scalar quantization is applied to the 

transformed residual (Max QP parameter value is 52). 

Quantization is followed by zigzag scan prior to entropy 

coding of residual. H.264 uses two variants of entropy coding 

such as Context Adaptive Variable Length Coding (CAVLC) 

and Content Adaptive Binary Arithmetic Coding (CABAC), 

these methods outperform VLC in achieving compression.  

Inter picture prediction is used to reduce temporal 

redundancies. Blocks of pixels from previously coded pictures 

are used to form a prediction. The residual signal encoded in 

each frame is the difference between a given block and the 

predicted block. H.264 supports lossy and lossless 

compression. Lossy compression process includes the block 

linear transformation, quantization and entropy coding of the 

blocks whereas lossless encoding skips transformation and 

quantization. Besides H.264, JPEG 2000 is also widely used 

for medical image compression. 

Instead of block based encoding of images as seen in H.264, 

JPEG 2000 partitions the original medical image into 

rectangular non-overlapping tiles, which are independently 

compressed into distinct images. Each tile component are 

applied DC level shift by subtracting the sample values with 

2p-1 precision quantity (p is precision). The tiles may undergo 

either irreversible or reversible forward discrete wavelet 

transformation (DWT) that may be used for lossy and lossless 

coding. DWT is used to transform the tile component into 

different transform levels that is sub-bands with coefficient 

describing the direction of spatial frequency characteristics of 

the original tile component. Transformed tiles are quantized 

using scalar quantization resulting into loss of precision. 

Quantization is normally used for lossy encoding. The binary 

symbols of Quantized tiles undergo arithmetic coding 

(entropy) wherein the symbols are compressed into 18 

different coding symbols. [9][10].  

 The main structure of HEVC is similar to H.264 as both of 

them include spatial and temporal prediction, transform, 

quantization and entropy coding. However, HEVC achieves 

significant compression gains over H.264 and J2K due to 

refinement in its coding tools such as more prediction modes 

for luma and chroma components and larger range of block 

sizes. HEVC dynamically divides the picture into coding units 

(CU) and supports a wide range of Coding Unit (CU) sizes, 

such as Prediction Units (PU) ranging   from 4x4 to 64x64 

pixels and Transform Units (TU) ranging from 4x4 to 32x32 

pixels. HEVC uses 33 angular directional intra prediction 

modes plus planar and DC and provides improved Intra 

compression performance. In case of J2K, each tile component 

are applied DC level shift by subtracting the sample values 

with 2p-1 precision quantity (p is precision). This HEVC 

coding tools results better match of prediction blocks during 

intra and/or inter prediction. HEVC [3] supports lossless 

compression mode up to Coding Unit (CU) level. The HEVC 

main profile bypasses the process of transform, quantization, 

and in-loop filtering in order to achieve lossless compression. 

In the lossless mode, HEVC still uses Inter prediction, Entropy 

coding and Intra prediction to exploit temporal, statistical and 

spatial redundancies. Due to new coding tools and approach, 

it's meaningful to compare the performance of HEVC with 

TABLE I 

ACCEPTABLE IRREVERSIBLE COMPRESSION RATIO RANGE 

ESTABLISHED BY KOFF ET AL. FOR JPEG & J2K [5] 

Anatomical Region / 

Modality 

CR/DR 

(Cr) 

CT 

(Cr) 

US 

(Cr) 

MR 

(Cr) 

Body 20-30 JPEG-10-15 

J2K 10 

8-12 16-24 

Chest 20-30 10-15 - - 
Neuro - JPEG 8-12 

J2K 8 

- 16-24 

Breast - - - 16-24 
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other widely used image coding method such as J2K.    

In reference to medical image compression, prior work 

evaluates the compression performance of 8-10 bit medical 

images [11], [12] and HEVC Main Still Picture Profile was 

used for encoding [12] whereas this paper evaluates the use of 

HEVC Range Extension Profiles, which support YUV format 

4:0:0 and compression of high bit depth images (10+ bpp). 

Zhou et al. reported that HEVC lossless coding can reduce the 

bitrate by up to 13% in comparison to near-lossless coding of 

HEVC using a quantization parameter of 0 [11]. Sanchez et al. 

had compared the performance of HEVC lossless compression 

of medical images with their proposed sample wise 

differential pulse code modulation method and achieved bit-

rate savings up to 15% [12]. The Image dataset used for their 

study consisted of images of DICOM modalities such as 

Magnetic Resonance (MR), Computed Tomography (CT) and 

Angiography [12].  Panayides et al. evaluated the compression 

performance of HEVC with MPEG-2, H.263, MPEG-4, and 

H.264/AVC for ultrasound videos and showed HEVC gains as 

much as 33.2% compared to H.264/AVC and their Despeckle 

HEVC filter achieves bit-rate savings of 43.6% compared to 

standard nonfiltered HEVC [13].  Koff et al. studied 

irreversible compression of medical images and established a 

diagnostically acceptable irreversible compression ratio (ICR) 

range of JPEG & J2K for medical images of various 

modalities and body parts [5]. Table I shows the compression 

range limits established by Koff et al. for medical images of 

commonly used modalities such as Computed Radiography 

(CR), Computed Tomography (CT), Ultrasound (US) and 

Magnetic Resonance (MR) [5]. The study shows that 

acceptable J2K ICR range varies by image modality and 

anatomical body part.  

HEVC intra coding tools achieves greater compression 

efficiency [6], [11]-[13] but it comes with higher 

computational cost [7]. Hence the second goal of this paper is 

to exploit the structure and similarity of medical images in 

order to reduce the Intra HEVC coding complexity. Methods 

for complexity reduction come at a cost of reduced 

compression efficiency and the goal is to minimize such cost. 

Wang et al. show average of 54% saving in encoding time for 

HEVC test sequences with RD performance loss of 1.0% in all 

Intra High Profile compared with HEVC reference software 

10 [14]. Correa et al. had earlier studied HEVC encoding 

decision using data mining for HEVC test sequences and 

showed Computation Complexity Reductions (CCR) of 50% 

at a cost of 0.56% in terms of Bjontegaard Delta (BD) rate 

[15]. Ruiz et al. proposed fast partitioning algorithm for 

HEVC Intra frame coding using machine learning, which 

show gains up to 30% with negligible loss of coding 

efficiency [16]. All the above mentioned studies on 

complexity reduction were carried out for standard 8 bits per 

pixel HEVC test sequences and HM 10.0 was mainly used for 

the study. The second goal of this paper is complexity 

reduction for high bit-depth medical images. The proposed 

model for computational complexity reduction is evaluated for 

medical images of more DICOM modalities and body parts.  

While we know that HEVC offers better compression 

performance than J2K, we do not know what level of HEVC 

compression could be diagnostically acceptable. We answer 

this question by using the established ICR bounds of J2K 

images. The first part of the paper discusses the evaluation of 

HEVC ICR bounds with a widely used medical image coding 

standard that is J2K. We compare with J2K because 

diagnostically acceptable ICR bounds of 10 and 12-bit J2K 

images are readily available for comparison [5]. 

III. HEVC BOUNDS FOR MEDICALLY ACCEPTABLE 

IRREVERSIBLE COMPRESSION 

A. DICOM standard and Medical Image Dataset  

The Medical images used in this study were DICOM 

images. DICOM is a medical imaging standard which enables 

interoperability between heterogeneous medical applications 

and devices [1]. The core part of the standard includes 

information entities, modules, file format, and a networking 

protocol. A DICOM medical image file normally contains 

medical image data and meta data included as Information 

Entities (IE) describing attributes such as patient, study, series, 

and image [1]. IE is an aggregation of several DICOM 

elements or DICOM attributes. Each DICOM element is an 

aggregation of four fields: a tag, a data type called value 

representation (VR), value length, and the value field. The 

relationship diagram depicting the association between 

DICOM objects is shown in Fig. 1. A DICOM tag is made up 

of group and element number fields; for example, the tag with 

group number 0028 is an image pixel group. These group tags 

are used to obtain the image configuration information that is 

TABLE II 

DICOM IMAGE PIXEL GROUP TAGS 

DICOM Image Tags Description 

Samples per pixel 

(0028,0002) 

Number of color channels. 

Photometric interpretation 

(0028,0004) 

Monochrome1 / Monochrome2. 

Defines whether zeroes be 

interpreted as black or white.  
Planar configuration 

(0028,0006) 

Shows how color channels are 

arranged in the pixel data buffer. 

Bits Allocated (0028,0100) Defines how much space in bits is 

allocated in the buffer for every 
sample. 

Bits Stored (0028, 0101) Defines how many of the bits 

allocated are actually used. 

High Bit (0028, 0102) Defines how the bits stored are 

aligned inside the bits allocated. 

Number of Frames 

(0028,0008) 

Defines the total no. of frames in 

the image. 

 

 
Fig. 1. Relationship between DICOM Information Entities and Elements 
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required for image compression. A few commonly used image 

pixel group tags are defined in Table II.  

This study used publicly available and de-identified medical 

DICOM [17], [18]. The images used in this experiment are of 

three modalities: Magnetic Resonance Imaging (MR), 

Computed Tomography (CT) and, Computed Radiography 

(CR). The data set covered five anatomical body parts: 

abdomen, brain, breast, chest and Headneck. Out of the 

images used in the study, MR-Headneck (wherein "MR" 

represents Modality and Headneck represents the body part), 

MR-Brain, MR-Breast, CT-Chest, CT-Brain, and CT-

Abdomen are image series whereas CR-Chest image has a 

single image.  The DICOM images are grayscale images with 

10-12 bpp depth. Images selected for this study are of 10-12 

bpp because our method for establishing HEVC ICR bounds 

relies on J2K ICR bounds established by Koff et al for 10-12 

bpp images [5].  Sample images from the data set are shown in 

Fig. 2. The images used in this study were of similar modality 

as used by Koff et al. [5]. The combination of modality and 

body part of images used in this experiment are shown as 

cross marked in Table III.  

B. Bounds for Irreversible Compression 

Koff et al. carried out diagnostic accuracy assessments with 

radiologists using the Just Noticeable Difference (JND) 

technique, to establish the Irreversible compression ranges 

acceptable for medical diagnosis [5]. These ICR ranges are 

shown in Table. I. In this study, the J2K compression ratios 

which fall within the irreversible compression range 

established by Koff et al. are used to establish the compression 

comparison with HEVC [5] and the irreversible compression 

performance of J2K and HEVC are compared for equivalent 

quality, measured using Structural Similarity Index (SSIM) 

and Peak Signal to Noise Ratio (PSNR). Razaak et al. 

evaluated the performance of seven video quality metrics for 

HEVC compressed ultrasound video sequences and found that 

structural similarity index metrics show good correlation with 

the subjective evaluation done by medical experts [19]. Hence 

the quality equivalence between J2K and HEVC was 

established on the basis of equivalent SSIM and PSNR [5], 

[19]. The study presented in this paper establishes an 

irreversible compression range for medical images 

compressed using HEVC-Intra and Inter coding modes.     

C. Method 

The compression method comprises of two processes (i) 

image format conversion and (ii) image compression. Firstly, 

the ImageJ [20] tool was used to convert DICOM image series 

into raw medical images (YUV (4:0:0) format). The 

irreversible J2K compression was carried out for these 

medical images using ffmpeg [21]. The compression level flag 

was varied from 0 to 30 in order to match the compression 

ratios with the ones established by Koff et al. Secondly, to 

compare the HEVC compression performance with J2K, 

HEVC HM reference software 16.6 was used to carry out 

HEVC encoding in intra and inter modes [22]. 

  For intra encoding, high-throughput-RExt profile was 

used and "Intraperiod" encoder parameter was set to 1. In this 

case, all the frames were encoded as Intra (I) frames. HEVC 

Inter coding was used to evaluate the benefits of temporal 

predictive coding for medical image series, which is not 

supported in Motion JPEG and J2K. For inter encoding, main-

RExt profile was used and the "Intraperiod" parameter was set 

to -1. This configuration results in the first frame being 

  
(a) MR-Headneck (b) MR-Brain 

  
(c) CT-Chest (d) CT-Brain 

  
(e) CT-Abdomen (f) CR-Chest 

Fig. 2. Sample medical images of various DICOM modalities and body 

parts used in this study. 
 

 

TABLE III 

DICOM MODALITY AND ANATOMICAL BODY PARTS OF THE MEDICAL 

IMAGES USED IN THIS EXPERIMENT 

BODY PART / 

DICOM MODALITY 
 

ABDOM

EN 

 

BRAIN 

 

BREAST 

 

CHEST 

 

HEAD 

NECK 

Computed 

Tomography 

(CT) 

X X - X - 

Computed 

Radiography 

(CR) 

- - - X - 

Magnetic 

Resonance 

Imaging (MR) 

- X X - X 

'X' indicates that the image modality + body part combination was used for the study 

 

 
Fig. 3 Overview of the proposed method 
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encoded as an I-frame and the remaining coded as bi- 

directionally predicted B-frames. The HEVC lossy encoding 

of high bit depth medical images was carried out by varying 

the quantization parameter, in order to match the PSNR and 

SSIM values of HEVC with J2K. The above mentioned 

experimental method is depicted in Fig. 3.  

IV. RESULTS 

The irreversible compression ratio (ICR) plots of HEVC-

Intra and Inter encoding of medical images of various 

modalities and body parts are shown in Fig.4-7. The figures 

show quality (PSNR or SSIM) values plotted on Y axis and 

compression ratio on X axis. Each figure shows quality vs. 

compression ratio plots for J2K and HEVC encoding of 

medical images. These plots show how the HEVC ICR is 

derived for a given J2K ICR limit using PSNR and SSIM as 

measures of equivalent quality. Fig. 4 and 5 show the mapping 

between ICR of HEVC-Intra and J2K for equivalent PSNR 

and SSIM quality for medical images of various modality and 

body parts whereas Fig. 6 and 7 shows same for HEVC-Inter 

and J2K. The title of each graph represents image and the 

graph related properties. As for example, the title of the 1st 

graph shown in Fig. 5 is "MR HeadNeck-3 / J2K - HEVC 

Intra / Cr - Mean SSIM / f-26 / 336 x 384 / 12 bpp ," wherein 

"MR HeadNeck" means image modality and body part 

examined, "J2K–HEVC Intra" represents the two variables, 

for which data points are plotted in the graph, "Cr–Mean 

SSIM" represents the titles of X and Y axis, "f-26" represents 

the total no of frames in the image series, "336 x 384" is the 

image resolution in pixels and "12 bpp" is image bit depth. 

 The HEVC ICR range, its corresponding mean QP search 

range along with standard deviation and space savings is 

shown in Table IV and V for the test images of specific 

modality-body part. The HEVC ICR range for each image 

modality and body part was computed by taking the longest 

common sub sequence of compression ratios across all related 

test images grouped by the same class (modality + body part).  

As shown in Table IV, the ICR range of MR-Brain 

Modality shows the lowest compression ratio increased from 

16 (J2K) to 29 (HEVC Intra- PSNR) and at the same time, the 

highest compression ratio also increased from 24(J2K) to 35 

(HEVC Intra-PSNR). This example is shown in bold-italics in 

Table IV.    

In comparison to the other images used in the experiment, 

for MR-Headneck the increase in ICR range in comparison to 

J2K for equivalent SSIM quality (shown in the fourth column 

of Table IV) is the lowest. One main reason for the low ICR 

increase in case of MR-Headneck images is due to presence of 

complex anatomical structural details in the image (refer Fig. 

2a). In lossy mode, the encoding of this complex anatomical 

structure leads to a larger loss of structural information as 

indicated by lower SSIM. HEVC-Intra results show higher 

space savings in comparison to J2K for all modalities and the 

results are shown within parenthesis in 3rd and 4th column of 

Table IV. The space savings achieved is up-to 54% in case of 

PSNR and up to 50% for SSIM based results.  

 Similarly, Fig. 6 & 7 shows the correlation between ICR of 

HEVC-Inter and J2K for equivalent PSNR and SSIM values. 

As shown in Table V, for MR-Brain Modality, the lowest 

compression ratio for HEVC-Inter increased to 29 from 16 

(J2K) and at the same time, the highest compression ratio also 

increased from 24 (J2K) to 33 (HEVC-Inter). HEVC-Inter 

shows increase in ICR in comparison to J2K for MR-

Headneck, MR-Brain and CT-Abdomen images and the space 

saving results are shown within parenthesis in third and fourth 

column of Table V. The space savings achieved is up-to 51% 

in case of PSNR and up to 50% for SSIM based results.  

For CT-Chest and CT-Brain modalities evaluated, the ICR 

correlation could not be established in absence of equivalent 

PSNR and SSIM quality points.  The Third graph shown in 

fig. 6 depicts this scenario for CT-Chest sample. As shown in 

this plot, the acceptable J2K ICR range for CT-Chest is 10-15 

Cr (plotted in yellow color) and the corresponding max and 

min PSNR is 63.67 and 60.28 dB, Moreover for these PSNR 

quality points, HEVC–Inter has no equivalent PSNR points, 

because the max PSNR is 59.45 dB and compression ratio is 

23.29 (for QP = 0). Similar result was observed for SSIM, 

wherein the min and max SSIM for J2K is 0.78 & 0.92 (for 

10-15 Cr) whereas HEVC-Inter yields max SSIM of 0.62 and 

TABLE IV 

PROPOSED HEVC-INTRA ICR RANGE, QP SEARCH RANGE AND SPACE 

SAVINGS FOR HIGH BIT DEPTH MEDICAL IMAGES. 

DICOM 
Modality - 

Body Part 

examined 

ICR 
range 

of J2K 

(Koff 
et 

el[5]) 

HEVC-Intra ICR , 
derived on basis of 

equal PSNR quality  

[QP search range ± 
SD ] 

(related % decrease 

in file size) 

HEVC-Intra ICR , 
derived on basis of 

equal SSIM quality 

[QP search range ± 
SD ] 

(related % decrease in 

file size) 

MR-
Headneck 

16-24 26 – 30 [10-14 ± 4] 
(38 - 47) 

18 – 27 [ 8-12 ± 6] 
(9 - 40) 

MR-Brain 16-24 29-35 [13-18 ±2] 

(45-54) 

29-32 [14-17 ± 4] 

(45 to 50) 
CT-

Abdomen 

10 13 [4 ± 1] 

(23) 

12 [4 ± 1] 

(17) 

CT-Chest 10-15 16 – 18[ 5-8 ± 8] 
(38 – 44) 

15 – 18 [5-7 ± 8 ] 
(33 – 44) 

CT-Brain 8-12 11 – 14[ 5-9 ± 8] 

(27 – 43) 

12 – 14 [ 5-9 ± 9 ] 

(33 – 43) 
CR-Chest 20-30 27 – 38 [ 8-11 ±1] 

(26 – 47) 

26- 34 [ 8-10 ± 1] 

(23 – 41) 

 

TABLE V 
PROPOSED HEVC-INTER ICR RANGE, QP SEARCH RANGE AND SPACE 

SAVINGS FOR HIGH BIT DEPTH MEDICAL IMAGES. 

DICOM 

Modality - 

Body Part 

examined 

ICR range 

of J2K 

(Koff et 

el[5]) 

HEVC-Inter ICR , 

derived on basis of 

equal PSNR 

quality  

[QP search range 
± SD ] 

(related % 

decrease in file 
size) 

HEVC-Inter ICR , 

derived on basis of 

equal SSIM 

quality [QP search 

range ± SD ] 
(related % 

decrease in file 

size) 

MR-

Headneck 

16-24 26 to 30 [7-11 ± 5] 

(38 - 47) 

17 to 28 [8-12 ± 3] 

(6 to 42) 

MR-Brain 16-24 29-33 [11-15 ± 2] 

(44 to 51) 

29-32 [10-14 ± 3] 

(44 to 50) 

CT-
Abdomen 

10 13 [ 1 ± 1 ] 
(23) 

12 [ 1 ± 1 ] 
(17) 
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Min Cr of 23.29 (for QP =0). Thus, for acceptable ICR range 

of J2K, the corresponding min PSNR and SSIM is greater than 

max PSNR and SSIM of HEVC-Inter. Similar result was 

observed for ¾ of CT-Chest & Brain samples. Hence for CT-

Chest & Brain samples, HEVC-Inter compress more but at 

cost of acceptable quality.  

The HEVC compression benefit comes with a cost. The 

higher computational complexity of HEVC increases the 

encoding time. The predictable structure of medical images 

can also be exploited to reduce encoding complexity. The 

second part of this paper presents a method for computational 

complexity reduction of HEVC intra coding for medical 

images. Preliminary results from this approach were reported 

in [7]. The following section presents the CCR method and its 

performance for medical images of several modalities and 

body parts.  

V. HEVC INTRA ENCODING COMPLEXITY 

REDUCTION FOR MEDICAL IMAGES 

The second part of this study evaluates the performance of 

the proposed Computational Complexity Reduction (CCR) 

model for lossless-HEVC-intra encoding of medical images of 

various modalities. The objective of this work is to study 

whether the structure and content of medical images can be 

used to reduce encoding complexity. Another objective is to 

maximize complexity reduction while minimizing file size 

 

 

 
Fig. 6 Graphs of medical images of various modalities showing ICR 

correlation between HEVC-Inter and J2K for equivalent PSNR quality. 

 

 

 
Fig. 5 Graphs of medical images of various modalities showing ICR 

correlation between HEVC-Intra and J2K for equivalent SSIM quality 

 

 

 
Fig. 4 Graphs of medical images of various modalities showing ICR 

correlation between HEVC-Intra and J2K for equivalent PSNR quality. 

 

 
Fig. 7 Graphs of medical images of various modalities showing ICR 

correlation between HEVC-Inter and J2K for equivalent SSIM quality. 
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increase. The CCR model limits the HEVC coding tree depth 

and reduces the number of angular directional intra prediction 

modes evaluated during Rate Distortion (RD) optimization. 

The CCR model was trained with medical images of CR-chest 

modality [7] and is tested with images of different modality 

and body part as listed in Table III. These medical images are 

popularly used in related research [17], [18]. 

A. HEVC Coding features contributing to increase 

Computational Complexity. 

HEVC compression gains in Intra coding are due to coding 

features such as (i) Higher Coding tree Depth, wherein each 

image (frame) is divided into coding units (CU) of various 

sizes. The size of these CUs can range from 64x64 to 8x8 

pixels, (ii) use of large number of directional predictors, (iii) 

and use of variable size prediction units (PU) and transform 

units (TU), also enables a better match for prediction and 

transform of CUs. Furthermore, the size of a PU can also vary 

from 64 x 64 to 4 x 4 pixels in order to find a better PU match 

during prediction and TU size can vary from 32x32 to 4x4 

pixels for efficient transformation of CU. For Intra prediction, 

there are 2 symmetric PU modes: 2N x 2N and NxN whereas 

for inter prediction, there are 8 asymmetric PU modes. The 

splitting of PU during intra or inter prediction is performed, 

when splitting results in better prediction and smaller residual. 

HEVC supports 33 angular directional intra prediction modes 

plus Planar and DC for reducing spatial redundancies by 

finding an optimal prediction match. In comparison to H.264, 

use of a large number of HEVC angular directional intra 

prediction modes results in increased computational 

complexity, as all these modes will be evaluated during RD 

optimization [2] [3]. Fig. 8 shows the 33 (modes 2 to 34) 

angular directional intra prediction modes, which may be 

evaluated during Intra prediction. 

B. HEVC Intra Prediction 

 The HEVC intra prediction process is mainly divided into 

Rough Mode Decision (RMD) and Rate Distortion 

optimization. The full 35 Intra prediction modes are evaluated 

as a part of RMD and a set of 3 – 8 modes with lower Rate 

Distortion cost are selected for further evaluation. The optimal 

intra prediction mode and optimal PU size are determined in 

the following stage. CU splitting and intra prediction mode 

selection is completely content dependent and is dynamically 

computed during runtime. Given that most commonly used 

medical images are grayscale with soft texture and less 

complex structural details, splitting of CU into smaller 

partitions may not be required. At the same time, evaluation of 

all 33 angular directional intra prediction modes may also not 

be required during intra prediction.   

C. Computational Complexity Reduction Method 

   During Training phase the CCR experiment was divided 

into three stages.  In Stage-I, the largest coding tree depth was 

determined for the training image set which included medical 

images of chest recorded in CR modality. A bound on the 

coding tree depth was determined by selecting the subset of 

PU sizes which cover at least 95% of the image area. 

Thereafter in Stage-II, for each PU size, a subset of angular 

directional intra prediction modes was selected. The angular 

directional intra prediction modes selected were the ones used 

for intra prediction in at least 95% of PUs of a given size. 

Finally, in Stage-III, the reduced depth and prediction modes 

established in the first two stages were implemented in an 

HEVC encoder (CCR-HEVC). The baseline complexity for 

performance comparison was obtained using the default HM 

reference software 16.4 [22].  The CCR results obtained by 

using the CCR-HEVC encoder during training phase, showed 

an average of 52.47% reduction in encoding time with a 

negligible penalty up to 0.22% in terms of increase in file size 

[7]. The CCR method is described as follows: 

During Stage-I, the minimum subset of PU sizes, was 

found, which covers at least 95% of the image area (APUS 

%). The HEVC encoding was configured with RMD enabled 

and all the 33 angular directional intra prediction modes plus 

planar and DC were also enabled. After encoding the training 

images (CR-Chest images), the mean of the total pixel area for 

each PU size (APUS %) was computed among all training 

images. The Threshold Thapus was set to 5% in order to 

eliminate the least used PU size. As shown in Fig. 9, PU size 

of 4x4 was least used (APUS% < Thapus) and at the same time 

the pixel area jointly covered by all other PU sizes is greater 

than 95%. Therefore the coding tree depth was limited at PU 

size of 8x8 pixels. A part from these results, during Stage-I, 

the best angular directional intra prediction mode used for 

prediction of each PU was also noted [7]. 

During Stage-II, RMD was disabled and RD Optimization 

 
Fig. 8. Set of Angular Directional Intra Prediction modes that were 

selected for 95% times [4]. 

 
Fig. 9. Stage-I result: mean APUS% of each PU size across all CR-Chest 

training images [7] 
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was run with all 33 modes + planar and DC. This exhaustive 

mode selection was carried out in order to find the best 

angular directional intra prediction mode for each PU. The 

mode data was used to determine the total usage of each 

angular directional intra prediction mode for all selected PU 

sizes. In the final step, for each PU size (selected during stage-

I), the subset of angular directional intra prediction modes was 

selected, whose total combined usage was greater than Thadp. 

The threshold Thadp was set to 95% for the experiment. The 

results show that for large PU sizes (64x64, 32x32, 16x16), 

horizontal and vertical modes (10 and 26 as shown in Fig. 8) 

were selected for 95% of PUs whereas for 8x8 PU sizes; five 

additional vertical modes {18, 22, 23, 24, 25} ( shown in Fig. 

8) were also selected. This subset of angular directional intra 

prediction modes selected for each PU size during stage-II is 

shown in Table VI and these modes are circled in Fig. 8. The 

content of medical images is thus shown to reduce the number 

of angular directional intra prediction modes necessary for 

efficient compression.  

The CCR-HEVC encoder was built on the basis of the PU 

size and angular directional intra prediction modes selected 

during Stage I and II. The CCR model was developed using 

mode training data from CR-Chest images and the results 

showed up to 52% reduction in encoding time with a 

negligible penalty of 0.22% increase in file size [7].  

During testing phase, the CCR-HEVC encoder was 

evaluated for the medical image modalities and body parts as 

shown in Table III. The baseline results acquired by using 

default HEVC lossless encoder HM 16.4 were compared with 

the CCR results for these images. The experiment was run 2 

times in lossless-Intra mode. The mean results of two runs 

shows up to 55% reduction in encoding time with negligible 

increase in compressed file size. 

VI. RESULTS  

The results for the computational complexity reduction 

experiment are shown in Table. VII. This table shows the 

mean % reduction in HEVC-Intra encoding time and resultant 

mean % increase in the compressed file size for medical 

images of various modality + body part. These CCR results 

acquired for each image modality and body part is compared 

with the baseline results, which was acquired by running the 

experiment using the default HEVC encoder. The ∆ value 

between CCR and baseline results shows that encoding time 

reduces up to 55% with a penalty of up to 1.18% in terms of 

increase in compressed file size. 

VII. OBSERVATION 

HEVC ICR bounds : The results for the irreversible 

compression experiments shown in Fig. 4 to 7, clearly 

demonstrates increase in ICR range for all modalities in case 

of HEVC-Intra and for three modalities in case of HEVC-

Inter. As shown in Table IV, for HEVC-Intra, on basis of 

PSNR quality all image modalities shows higher % reduction 

in file size and space saving up to 54% is measured for MR-

Brain and lowest gains of 23% is measured for CT-Abdomen. 

Similarly for HEVC-Inter ICR results, MR-Brain shows 

highest % reduction in file size up to 50% and CT-Abdomen 

shows lowest % reduction in file size that is up to 17%.   For 

all selected image modalities the ICR range extends over J2K 

for equivalent PSNR and SSIM quality. These results for 

HEVC-Intra are shown in Table IV whereas for HEVC- Inter, 

it is listed in Table V.  The QP parameter with standard 

deviation recommended in Table IV and V may enable 

researchers to obtain a starting point to generate medically 

acceptable irreversible compression ratio within the 

recommended bounds and may speed up the compression 

process additionally. 

CCR experiment results for test set of medical images are 

shown in Table VII. Medical test images of MR,CT,CR 

modalities shows similar gains in terms of reduction in 

encoding time as observed for training images and the gain 

varies from 55% for MR-Breast images to 51% for CT-Brain 

images. The penalty in terms of increase in file size is less 

than 1% for all image modalities and body part combination 

except for CT-Chest which shows penalty above 1%.   

VIII. CONCLUSION 

The study shows that using HEVC for medical image 

compression can reduce storage and bandwidth needs by up to 

54% compared in comparison to J2K. The evaluation was 

limited to the diagnostically acceptable compression ranges 

established in prior studies.  Even HEVC-Inter shows similar 

gains in terms of % reduction in file size. The ICR bounds 

established for HEVC are based on equivalent objective 

metrics and subjective assessments are necessary to determine 

subjective equivalence for the same objective distortion. The 

study also developed a method for computational complexity 

reduction in lossless Intra HEVC compression. Results show 

55% reduction in computational complexity with negligible 

increase in file size. Using such complexity reduction 

TABLE VI 
MAXIMAL SET OF ANGULAR DIRECTIONAL INTRA PREDICTION MODES 

FOUND DURING STAGE-II OF TRAINING PHASE 

PU Size Maximal set of angular 

directional intra prediction 

modes found during Stage-II 
(Training phase) 

64x64 {10, 26} 

32x32 {10, 26} 

16x16 {0, 10, 26} 

8x8 {0,1,10,18,22,23,24,25,26} 

 

TABLE VII 
CCR RESULTS FOR LOSSLESS HEVC –INTRA ENCODING OF MEDICAL 

IMAGES OF VARIOUS MODALITIES 

DICOM Modality 

- Body Part 
examined 

mean % reduction in 

encoding time 
(%) 

mean % increase in 

compressed file size 
(%) 

MR-Head-Neck 51.195 0.533 

MR-Brain 52.146 0.583 

MR-Breast 55.145 0.249 

CT-Abdomen 53.035 0.655 
CT-Chest 50.938 1.176 

CT-Brain 50.915 0.784 

CR-Chest 51.314 0.113 
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approaches reduces the cost of HEVC encoding while 

retaining the compression benefits. 
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